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The purpose of this study was to explore the use of detailed biological data in combination with a statistical
learning method for predicting the CYP1A2 and CYP2D6 inhibition. Data were extracted from the Aureus
Pharma highly structured databases which contain precise measures and detailed experimental protocol
concerning the inhibition of the two cytochromes. The methodology used was Recursive Partitioning, an
easy and quick method to implement. The building of models was preceded by the evaluation of the chemical
space covered by the datasets. The descriptors used are available in the MOE software suite. The models
reached at least 80% of Accuracy and often exceeded this percentage for the Sensitivity (Recall), Specificity,
and Precision parameters. CYP2D6 datasets provided 11 models with Accuracy over 80%, while CYP1A2
datasets counted 5 high-accuracy models. Our models can be useful to predict the ADME properties during
the drug discovery process and are indicated for high-throughput screening.

Introduction this study, sets containing a majority of inhibitors or a majority
One of the major reasons of failure in drug discovery projects of nor_nnhlbltors. Each spllt node can be compared to a b[nary
is related to the poor pharmacokinetic and ADME (absorption, guestion (yes/np) regarding the value of a particular descriptor.
distribution, metabolism, and excretion) properties of drug After the creation of the tree, any other new compound, for
candidates. Cytochromes P450 (CY#Pplay a crucial role in ~ Which the descriptors used in the split nodes have been calcu-
metabolisn? The proportion of drugs metabolized in human lated, can l:_)e classified into an inhibitor or a no.nlnh|b|tor type
liver by CYP2D6 and CYP1A2 represents 19% and 10%, Category; binary trees can thus be used to predict ADME prop-
respectively, of the whole activity range of all cytochrores. €rties. RP is known to be sensitive to the descriptors used, to
These percentages make them targets of choice for studying’_-mt?a_|anced training sets, constl_tl_Jted for example with too many
very early the potential inhibition by drug candidates. Forecast- Inhibitors, and to the composition of the datasets, that can
ing inhibition of CYP2D6 and CYP1A2 can help to predictand "adically change the decision tréén this paper, we focused
manage drugdrug interactions (DDI}:5 It is thus particularly ~ ©n building efficient models for the prediction of CYP2D6 and
important to take into account the biotransformation and CYP1AZ inhibition. Different parameters have been optimized
elimination of drugs during their development to determine as @nd different datasets were constituted in order to propose
early as possible their potential interactions with CYPs. In this Predictive models as accurate as possible.
sense, predictivén silico models are very useful in ADME/ One of the main problems consists of having access to a
DDI predictions®? However, in the case of CYPs, they are sufficient number of structured data to build efficient models.
particularly challenging to build due to the relative low speci- That is why our approach will be based on three main charac-
ficity of these enzymes. Compounds metabolized by cyto- teristics of our datasets. The quantity of data had to be always
chromes P450 are, indeed, structurally very dissimilar. sufficient (~100 compounds or more); the diversity of the
In silico studies, exploiting different methods as QSAR, datasets needs to cover a large chemical space; and different
pharmacophore modeling, molecular docking, etc., have alreadybiological parameters linked to the compounds must be ana-
been published, and predicting CYP inhibition is more and more lyzed. Such a collection of data with these particular qualities
efficient®15 The method chosen in our work is recursive differentiates ours from all other previous wofks: 15 The main
partitioning (RP), which is known to be fast and which leads purpose of this study is thus, with a simple methodology (RP),
to easily interpretable results. RP is based on decision trees ando investigate how structured biological data can help to consti-
has been used in diagnosfias well as in high-throughput  tute the most efficient training sets to build prediction models.
virtual screening’~2! More precisely, RP involves the creation  The quantity, the quality, and the diversity of the datasets have
of a decision tree composed of binary split nodes that divide been prone to discussion. Accordingly, the goal followed here
the initial training set into smaller sets of higher purity, i.e., in is not to make a comparison between different methods to
improve the models but to probe different parameters character-
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a Abbreviations: ADME, absorption distribution metabolism excretion; . .
CYP, cytochrome P450; DDI, druggirug interactions; QSAR, quantitative 1. Datasets.To achieve this study, two global datasets of
structure-activity relationship; RP, recursive partitioning; VSA, van der 498 and 306 compounds were at disposal for CYP2D6 and
Waals surface area, AMMC, 3-[N(N-diethyl-N-methylammoniumjethyll- ~ — cyp1A2, respectively. The content of each dataset is reported

7-methoxy-4-methylcoumari n; MOE, molecular operating environment; . . .
PCA, principal component analysis; PC, principal component; SVM, support I Table 1, including the class thresholds as well as the number

vector machine. of inhibitors and noninhibitors in the sets.
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Table 1. Distribution of the Compounds in the Inhibitor and PCA2
Noninhibitor Classes According to the Different Thresholds RN
dataset class threshojey  inhibitors  noninhibitors i CYP2DG6 training set J
CYP2D 6
global 10 206 292 .
25 247 251 i - el ]
bufuralol 3-30 74 64 S Sk LI
dextromethorphan 3-30 86 48 R "“*:..;s:_ e s by
AMMC 3-30 61 28 AL -..:_wz;;,_.-;-“ ! ]
Kj 10 78 85 :J"‘@' T
3-30 51 51 Rl VoL L RO .
1Cs0 10 71 174 TS0 Y15l
3-30 47 142 r . ]
CYP1A 2
global 50 154 152
Ki 30 41 40 “ . ]
1Cs0 30 92 133
The chemical diversity of the training and test sets was L

assessed using a nearest neighbor searching algorithm as imple- soa2 PR

mented in ChemAxon’s application Comisrin this algorithm, — T T T T

a weighted Euclidean distance calculation applies the Tanimoto CYP1A2 training set
(Jaccard) coefficient based on ChemAxon CF fingerprints. The

dissimilarity between molecules is then given by:

D(A,B) =1 - T(A,B) = {[1 - T(AB)] + L |
W;[Cy(A) — Cy(B)] + W,[Cy(A) — C(B))* + ..} T L AR

wherews, w; ... are weightsT(A,B), the Tanimoto coefficient
for molecules A and B, an@i(A), the value of descriptor i of ;
molecule A. T PTONE : 1

In the case of CYP2D6, the average and maximum nearest WLl . !
neighbor self-dissimilarities within the global training set were )
68.6% and 99.6%, respectively. For the CYP1A2 data, values
of the same range were obtained for the global training set, i.e.,
68.8% and 96.6%. The obtained values suggest that the used T S Y R -
datasets are sufficiently diverse. For both cytochromes, the same PCAY
analysis was done on corresponding external sets. Results argigure 1. Data distribution of the CYP2D6 and CYP1A2 training sets
discussed in Section 6. (blue dots) compared to AUREUS PHARMA's AurSCOPE ADME/

To visualize the diversity of our datasets, molecules of the DDI database, release June 2005 (grey dots). The comparison is based
training sets were compared with a general database of com-On the two first principal components calculated from 32 P_VSA
pounds related to ADME measures found in the literature, i.e., 46S¢1IPtors.
with the AurSCOPE ADME/DDI database. The comparison was
based on the two first Principal Components calculated from 498 compounds
32 P_VSA descriptors of all the molecules. The well-distributed
data for both 2D6 and 1A2 sets reinforce the idea that our
datasets cover a large chemical space (Figure 1).

2.1. CYP2D6. Global DatasetFirst, a global study was
performed with 498 compounds related to CYP2D6 inhibition
measures with mixed g andK; using 2D+ P_VSA descrip-
tors. The accuracy of the different trees built with the different
parameters, i.e., varying node split, depth, threshold of inhibitor/
noninhibitor, allowed us to conclude that the default MOE
parameters, node spht 10 and depth= 10, were adapted to
our kind of study. Indeed, other parameter values did not
radically change the overall Accuracy of the trees that always C
varied Zroundg75%. The best mode)ll with this global datas{:t ) © _Nofl-,mhlbltor Clas_s (IC5°/K‘,> IO”M)_ )
had an Accuracy of 78% with an inhibitors/noninhibitors cutoff F'gure 2. Decision tree and its descriptors built with 498 compounds

. related to G or Ki measures for CYP2D6 inhibition. 2D descriptors,
of 10,L_¢M.Actually, this value COUld_ Correspo_nd to the expected including P_VSA descriptors, were used, and the limit between
hepatic blood concentration of typical drug-like molecule when inipitors and noninhibitors was fixed to 1M.
administrated at therapeutic doseBhis model correctly pre-
dicted 168 out of the 206 inhibitors, with 82% of Sensitivity, 2.2. CYP2D6. Probe Substrates Dataset3o improve our
and 219 of the 292 noninhibitors, with 75% of Specificity; the models, more precise studies were performed based on the probe
Precision associated to inhibitor compounds was 70%. The substrate with which the inhibition measures were made. Three
structure of the obtained tree with the descriptors involved is main substrates were isolated to build consistent datasets, i.e.,
presented in Figure 2. containing at least 80 compounds. These were bufuralol,

a_hyd

| chiov

PEOE_VSA-4
PEOE_VSA_FNEG

@ = Inhibitor class (IC, /K, < 10uM)
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Table 2. Performance Parameters, Accuracy, Sensitivity, Specificity,

and Precision (in %), for the Three Models Corresponding to Three Bufuralol 138 compounds

CYP2D6 Probe Substrates Used in the Inhibition Measurement A I

Protocols, Bufuralol, Dextromethorphan, and AMMC chil C
Accuracy  Sensitivity ~ Specificity ~ Precision VD‘“Mal

bufuralol 88 80 98 98 SMR |

iﬁ(&%methorphan 8982 8281 9283 8290 SlogP_VSA PEOE_VSA-0
dextromethorphan, and AMMC (3-[N(N-diethyl-N-methyl-
ammonium)ethyl]-7-methoxy-4-methylcoumarin). Both sets of
2D and P_VSA descriptors were used together, and new cutoff
values for the classes were fixed, as theuM threshold did

not provide good results (data not shown). Inhibitors were
defined as compounds wit or ICso < 3 uM and noninhibitors vsa_hyd
> 30 uM. Compounds between 3 and g were removed, SlogP

but the inhibitors/noninhibitors classes were more discriminating
than the 1uM cutoff value. The 3 and 3@M cutoffs were

also chosen because of the good repartition of the compounds
in the two classes. Fixing these limits permitted us to keep
enough molecules in each class. Moreover, other thresholds were
tested in this particular case and did not provide results as good
as the 3-30 M one. Generating a tree based on these sets led
to the construction of three models; performance parameters as
defined in Materials and Methods are shown in Table 2 for each VDistEq

of them. All the parameters are above 80%, but the highlight SlogP_VSA9

of the models is the particularly high Specificity, and Precision,

i.e., 98%, of the bufuralol-based model. This last decision tree apol
predicted 60 compounds to be inhibitors; only one of them was

AMMC 89 compounds

Dextromethorphan

134 compounds

actually a noninhibitor. Observing and comparing the three trees,
we conclude that they have a relatively small depth: 4, 3, 2 for

bufuralol, dextromethorphan, and AMMC, respectively. De- @ = Inhibitor class (IC, /K, < 3uM)
scriptors used in their nodes are significantly different as shown
in Figure 3. No significant similarity between these trees can © = Non-inhibitor class (IC,/K, > 30uM)

be reported despite their (_:Iose performances_. . Figure 3. Decision trees and their descriptors built from three datasets
2.3. CYP2D6. SeparatingK; and ICso. Discriminating corresponding to the three most frequent probe substrates (bufuralol,
between theé; and 1G; values could enhance the accuracy of dextromethorphan, and AMMC) used in the inhibition experiments for
CYP2D6 models. It could not be done for the substrate study CYP2D6.
due to the relative small size of the datasets. The distinction
could be done for the global set and led to the constitution of
a set of 163; compounds and a set of 2455§ompounds. defined. Compounds witK; < 3 uM were identified as high
TheK; set provided the best results. A first model was generated inhibitors, that represented 51 molecules. Compounds Kith
with the 2D and P_VSA descriptors together and auM between 3:M and 30uM were called medium inhibitors, with
threshold which separated the dataset into 78 inhibitors and 8565 molecules, and compounds with > 30 uM were called
noninhibitors. Its Accuracy equals 90%, Sensitivity, 88%, poor inhibitors, with 47 molecules. This time, the combination
Specificity, 92%, and Precision, 90%, that constituted a really of the 2D and P_VSA descriptors led to the best model; the
efficient model (Figure 4). Using the set of P_VSA descriptors classification percentages of the training set for each class are
alone with 3-30uM thresholds led to quite similar model presented in Table 3. The overall Accuracy of this model is
performances with an Accuracy of 90%, Sensitivity of 90%, 83%, and the Precision associated to each of the class is 85%,
Specificity of 91%, and Precision of 92%. Obviously, the trees 82%, and 83%, for the high, medium, and poor inhibitors,
cannot be compared because they are composed of totallyrespectively. The model correctly discriminates high and poor
different descriptors. The one built with the 2b P_VSA inhibitors, as when predicting high inhibitors, only 4% are taken
descriptors needed a depth of 5 and 10 nodes while the oneas poor and when predicting poor inhibitors, none of the com-
based on P_VSA alone has only a depth of 3 and is composedpounds are placed in the high inhibitors class. In the case of
of 5 nodes (data not shown). In this last case, the P_VSA ICsy measures, several combinations between the descriptors
descriptors are more “efficient”, as they needed a smaller tree sets and tree parameters were tested but none led to effective
to provide results as good as those with the 2DP_VSA models. The key was actually to take into account the proto-
descriptors. An interesting event that can be highlighted is that nation stage of each molecule. Protonation of the basic functions,
P_VSA descriptors were taken into account in the building of deprotonation of the acid ones, and a recalculation of the
the two trees; but mixed with pure 2D descriptors, the model descriptors based this time on charged atoms succeeded in two
obtained was more complex but equal in performances. Doubt-more efficient trees. The effect of this manipulation was to
less, this is due to “noise” generated by using too many descrip-enhance the electrostatic properties of the compounds. Actually,
tors in this particular situation. electrostatic properties are one of the key factors governing
Such good results encouraged us to investigate more deeplyCYP2D6 inhibition (cf. Section 7. Comparison with Earlier
theK; set with a multiclass study. Three classes were therefore Studies). Their inhibitors/noninhibitors classes were defined as
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i Training set: 163 compounds i CYP2D6 CYPIA2 i Training set: 81 compounds i
a_hyd SMR_VSA6
bpol | chit SlogP_VSA7  SlogP_VSA9

PEOE_RPC VDistEgq | SMR_VSAS
é é |PEOE_PC+ PEOE_ SlogP VSA9$ PEOE_ VSA+4é

PEOE_VSA SlogP_| VI3
_FPNEG (0/0) (0/0) VSAS (/1) 5 % (1()/1) (16/3)
% (0/0)

(4/0)
Q} (0/1) (0/0) (6/0) (4/2) (314) (8/1)
(1/0) (1/0) @y (197

Figure 4. Two of the best models from the CYP2DRg; (dataset, 1&M threshold, 2D and P_VSA descriptors) and CYP1K2 dataset, 3«M

threshold, P_VSA descriptors) datasets. Both models have been validated with an external dataset of 34 and 58 compounds for CYP2D6 and
CYP1AZ2, respectively+ and— signs mean that the class assigned to a leaf is inhibitor or noninhibitor, respectively. The distribution of molecules

of the test set in each leaf is positioned between brackets (number of correctly classified compounds/number of misclassified compounds).

Table 3. Prediction Percentages for the Multiclass Study Based on the  results were obtained for thresholds between 30 and\BOIt

Ki Measures from the CYP2D6 Inhibition Experiments is precisely the same range of threshold used in the recently
prediction published study by Chohan etl.
class high, % medium, % poor, % 3.2. CYP1A2. SeparatingK; and ICso. As shown in the
high 78 18 2 CYP2D6 study, separating sgandK; generated good prediction
medium 11 78 11 models. The I dataset made of 225 molecules was used and,
poor 0 4 96 combined with the set of P_VSA descriptors and aB0Oclass
2 Percentages of true prediction are noted in bold. Three classes whereliMit, gave an 86% Accuracy model. Sensitivity, Specificity,
considered: high inhibitork{ < 3uM), medium inhibitors (M < Ki< and Precision were of 83%, 88%, and 83%, I’espec’[lvely With
30 uM), and poor inhibitorsK; > 30 uM). the same descriptors and the same thresholdKtliataset of

81 molecules led to an overall Accuracy of 89%, Sensitivity of
< or > 10 uM for the first one and<3 and>30 uM for the 95%, Specificity of 83%, and Precision of 85% (Figure 4). 39
other; they both presented an overall Accuracy of 85%. The of the 41 inhibitors were correctly classified. As for the CYP2D6
10 uM threshold tree presented 89% of Sensitivity, 84% of models, predicting classes based on thevalues is more
Specificity, and 69% of Precision. The respective parameters efficient. The 30«M threshold separates once again te
for the second tree are 83%, 89%, and 72%, respectively. Pre-dataset in two equal parts, i.e., 41 inhibitors and 40 noninhibi-
cision values are somewhat disappointing in regard of the tors, following the example of the %M threshold on the global
previous values obtained for th§ or probe substrate based set. If 2D descriptors are added to the P_VSA ones,Khe
models. That can be explained by the unbalancegd@tasets. based model's performances are quite similar with an overall
Indeed, the sets contained about three-quarters of noninhibitorAccuracy of 89%, Sensitivity of 86%, Specificity of 92%, and
compounds. A poor classification for these has a worse influence Precision of 93%.
on the Precision than for a balanced dataset, considering that 4. Using 3D Descriptors.To further improve our models,
the proportion of false positives is larger. The twosd@ees 3D descriptors were also exploited. For CYP2D6, the use of

are rather structurally different as the first one, with the.M the set of 3D descriptors allowed us to build a model with an
threshold, contained only 2 nodes for a depth of 2 and the otherg4% Accuracy, 83% Sensitivity, 85% Specificity, and 85%
one had 4 nodes and a depth of 4. Comparing the 3@dK; Precision. In a rather intuitive way, the addition of 2D descrip-

models, it is obvious that th€-based models are more reliable tors to the 3D ones allowed improvement of the model. Accu-
than the 1Gy-based models, as the difference of Accuracy is racy, Sensitivity, Specificity, and Precision, were 87%, 88%,
5% in favor ofK;, i.e., 90% for both the<; models and 85%  87%, and 87% respectively. With a set of mixed 2D and 3D
for both the 1Go models. This can be explained by the fact that descriptors, the trees gained 2 to 5% on each accuracy parameter
Ki values are intrinsic constants, whereas;pl@alues are compared to 3D descriptors used alone.
extrinsic constants. I§g values, in contrast td&; values, are For the global CYP1A2 dataset, a tree was built based on
dependent on the type of substrate, the concentration of sub-classes delimited by a 5M threshold. The Accuracy was 90%,
strate, and incubation conditions (protein concentration or incu- Sensitivity, 91%, Specificity, 88%, and Precision, 89%. A
bation timeS, etC.). As a consequence, better classifications COU'Ci'nuiticiaSS Study was also performed_ Very discriminating
be obtained wheiK; values are used instead ofs§values. thresholds were used: high inhibitors were under /2,

3.1. CYP1A2. Defining a Threshold. The good quality medium between 10 and 2@ and poor over 20M. The
results obtained for CYP2D6 encouraged us to apply our best results were obtained with a combination of all the
working method to another interesting cytochrome P450. The descriptors, 2D, P_VSA, and 3D. Actually, these values split

CYP1A2 dataset was composed of 225d@alues and 8X; the dataset into three reasonably equivalent groups of 100, 80,
values. Literature sources about CYP1A2 did not provide a and 108 molecules, respectively. The overall Accuracy of the
precise inhibitor/noninhibitor threshold such as the:Mvalue obtained model is 86% and the Precision for the high, medium,

for CYP2D6. Therefore, different trees were built with different and poor inhibitors is 83%, 85%, and 90%, respectively. Classi-
thresholds to determine the best limit between the two classes fication results for all the classes are presented in Table 4. The
Two types of descriptors were tested for this study: 2D descrip- detailed structure of this tree is reported in Figure 5. The tree
tors and P_VSA descriptors. We analyzed different thresholds (depth of 7, 27 nodes) resulting from the use of the three classes
between 3uM and 100uM and concluded that the optimum that lead to three types of leaves is rather complex.
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Table 4. Prediction Percentages for the Multiclass Study Mixing the models based on this set of 39 descriptors were built but did
2D, P_VSA, and 3D Descriptors for the CYP1A2 Inhibition not led to better results compared to the ones obtained with the
Experiments previous trees.
prediction For several molecules, 18 of all the 3D descriptors could not
class high, % medium, % poor, % be calculated. Therefore, 13 molecules from the CYP1A2 dataset
high 89 5 6 and 15 from the CYP2D6 dataset were removed to perform the
medium 16 78 6 3D studies. When analyzing the descriptors of the 15 models
poor 5 6 89 we retained, it can be concluded that some descriptors are more

apercentages of true prediction are noted in bold. High inhibitors are used than others. SlogP appears 5 times and P_VSA descriptors
compounds whose kg or K; are under 1uM, medium inhibitors are based on SlogP (named SlogP_VSAx) 16 times. Another 2D
between 1Q:M and 2004M, and poor inhibitors are over 2QaM. descriptor is also counted 5 times, VDistEq, which is based on

the distance matrix of the molecule. For 3D descriptors, the

5. Pertinent Descriptors. Principal component analysis ones calculated from the AM1 method are the most frequent
(PCA) reduces the dimensions of measured variables, i.e., ourwith 10 occurrences. E_Tor (torsion potential energy) is counted
descriptors, to the representative principal components (PCs).5 times. A deeper discussion about controlling factors for the
As the set of PCs is smaller than the one of descriptors, a PCinhibition of CYP1A2 and CYP2D6 is presented in Section 7.
explains a greater variability of the dataset than a single 6. External Validation. To confirm the performance of our
descriptor. That kind of investigation was executed on the global models, two external test sets of 34 and 58 molecules related
datasets for CYP2D6 and CYP1A2, focusing only on 2D and to the CYP2D6 and CYP1AK; experiments were collected.
P_VSA descriptors. The first two PCs did already describe about Their diversity was computed exactly as for the previous training
40 and 10% of the whole variability for CYP2D6 and 45 and sets. For the CYP2D6 external test set, the average and
10% for CYP1A2. As PCs are linear combinations of the maximum nearest neighbor dissimilarities were 60.4% and
descriptors, searching for descriptors with a high coefficient in 86.2%. When considering the diversity of the test set versus
the combination led to the isolation of the most influential ones. the correspondind; training set, the average and maximum
In doing so, 39 descriptors were noted for the two first PCs of dissimilarities were 52.9% and 79.7%, respectively. For CYP1A2,
CYP2D6 and CYP1A2 datasets. A majority of these descriptors these values were 69.9% and 94.5% for the self-dissimilarity
could be found in the four PCs considered. Very traditional evaluation of the external set, 80.4% and 98.7% for the test/
descriptors, such as density, SlogP, number of double/triple/ training sets dissimilarity comparison.
rotatable bonds, number of halogen atoms, and number of For both cytochromes, Figure 6 shows a good coverage of
H-bonds donor/acceptor, were defined as pertinent. Severalchemical space. The molecules were submitted to the model

| 288 compounds |
|1
2 |
3 | 8 | 18
J@ﬁi%“' 5 6 b
5 10 11 13 14 21
6 ® 4@ Cg %ﬂ) (g AD 15 4") 4@ 22 23
ONG M [ 16
ONG

@ = High inhibitors (IC,/K, < 10puM) @ = Medium inhibitors (10pM < IC,/K < 200uM) @ = Poor inhibitors (IC,/K, > 200pM)

Nod Descriptor Node Descriptor Node Descriptor Node Descriptor Node Descriptor
e
1 a_acc 7 AMI1_HOMO 13 E_stb 19 E_tor 25 std_dim2
2 PEOE_VSA+2 8 a_nN 14 b_rotR 20 a_hyd 26 SlogP
3 chil_C 9 vsa_acc 15 blrotR 21 chil_C 27 PEOE_VSA+
0
4 E_oop 10 b_IrotR 16 SlogP_VSAS8 22 a_nH
5 SlogP_VSA9 11 reactive 17 SMR_VSAL1 23 AM1_dipole
6 E_stb 12 vsa_pol 18 SlogP_VSA7 24 SlogP_VSA3

Figure 5. Decision tree built for a multiclass analysis for the CYP1A2 inhibition. Three classes of inhibitors were used: high intikbitot€4,
< 10 uM), medium inhibitors (1«M < K| or ICso < 200uM), and poor inhibitorsK; or ICso > 200uM). Each node is labeled by a number that
corresponds to an entry of the table. The table contains the descriptor used in each node.
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pcaz . , , , , . . , 7. Comparison with Earlier Studies. Several papers have
already described various pharmacophore modé&ts® as
CYP2D6 K test set well as some 3D QSAR studies regarding CYP2D6 and
CYP1A210.12.2627THowever, it is known that such approaches
are not convenient when large and diverse chemical and bio-
i e logical datasets are available from different sources. The use
S o of machine learning techniques with categorical data is conse-
o o : | quently gaining popularity and several studies on cytochromes
: P450 have been reported due to the ability of using such models
| to screen rapidly large molecular libraries (Table 5). Ekins et
al.2® employed RP to model the percentage of inhibition of
CYP2D6 using a large dataset of 1759 molecules in combination
with over 2500 augmented atom descriptors. Models were tested
on 98 external molecules leading to Spearman’s value of 0.61
) 3 8 1 3 2 : : : with 50 compounds correctly predicted (51%). It should be noted
Peat that, contrary to the present study, biological activity was
expressed in terms of percentage of inhibition, which is less
. reliable than IGy or K; values. Similarly to Ekins et al., con-
sensus recursive partitioning was used by Susnow &ttal.
identify inhibitors of CYP2D6. These authors used 25 in-house
2D molecular descriptors computed for a training set of 100
DRSS BT compounds. Internal validation tests indicated an overall clas-
EEo ? sification of 75%. When applied to a 51 molecule external set
S assembled from literature, the model led to an Accuracy of 100%
o B for 10 inhibitors and 75% for 41 noninhibitors. Recently,
2 ' ’ 1 O’Brien and de Grod# used other machine learning methods
including neural networks and Bayesian models; a consensus
model combining these methods predicted 87% of positives and
75% of negatives. Although these three studies brought an
efficient overall prediction of CYP2D6 inhibitors, no precise
st L L s : s s 2 : i information on the selected descriptors and their interpretation
PCA1 was reported.
Figure 6. Data distribution of CYP2D6 and CYP1AR test sets (red Yap and ChelP explored the use of the support vector
and blue dots, respectively) compared to Aureus Pharma’s AurSCOPE machine (SVM) for predicting inhibition for CYP3A4, CYP2C9,
ADME/DDI database, release June 2005 (grey dots). The comparison 5, cyp2p6. The 2D6 training and validation datasets consisted
is based on the two first principal components calculated from 32 -
P_VSA descriptors. of 602 and 198 molt_acules, r(_aspectlvel_y. These authors used 1607
structural and physicochemical descriptors to compute the aver-

we presented as the best: CYP2Riébased tree built with 2D~ 29€ similarity value between all pairs of compounds in the
and P_VSA descriptors (Figure 4). This validation was suc- dataset in a similar way to our method for analyzing the
cessful, as only two false negatives and two false positives werechemical diversity of the training and validation sets. Descriptors
detected. The parameters of this classification are close fromencoding electrostatic and hydrophobic characteristics were
those obtained with the training set, as the Accuracy is 89% Selected as relevant descriptors to classify inhibitors and non-
(90% for the training set), Sensitivity is 91% (88%), Specificity inhibitors of CYP2D6. Our findings are consistent with these
is 81% (92%), and Precision is 91% (90%). The detail of the €arlier studies. When considering the model we presented as
repartition of the test set compounds in different leaves shows the best, i.e.Ki-based tree (Figure 4), the descriptors selected
that one leaf is particularly populated with 19 inhibitors and ©n first nodes were a_hyd, number of hydrophobic atoms, chil,
one noninhibitor. Hall atomic connectivity index>3 bpol, sum of the absolute
For CYP1A2, theK;-based model built using VSA descriptors  value of atomic polarizabilities of all bonded atoms in the
with 30 uM as threshold and best Sensitivity was evaluated on molecule, PEOE_RP€, relative positive partial charge, and
the test set. Despite the larger dissimilarity between the training the SMR_VSAS descriptor. The average values of these descrip-
and test sets, very reasonable parameters were obtained sinc@rs for inhibitors and noninhibitors of 2D6 dataset are gathered
Accuracy is 81% (89% for the training set), Sensitivity is 76% in Table 6. These descriptors indicate the hydrophibicity, shape,
(95%), Specificity is 86% (83%), and Precision is 85% (85%). and electrostatic contributions, as suggested by pharmacophoric
Here, the distribution of the test set compounds is more modeling of inhibitors of CYP2D6! A comparison between
widespread; the validation of the model is thus reinforced. these descriptors for some similar molecules belonging to
Correlation matrixes of the main molecular descriptors different classes is given in Table 7. Hydroxynefazodone and
involved in the classification are given for the best 2D6 and nefazodone are both 2D6 inhibitors but differently predicted.
1A2 models in the Supporting Information; they indicate a low This is due to the corresponding values of the size related
degree of correlation among them. descriptor SMR_VSAS5, 177.5 and 196.52 for hydroxynefazo-
In general the models are likely to correctly predict the test done and nefazodone, respectively. Also interestingly, clo-
set compounds when we consider similar datasets. Here, themipramine and imipramine, which differ by a Cl substituent,
inter-dissimilarity between each of the training sets and its belong to different classes and have distinct SMR_VSAS5 values
corresponding test set along with obtained predictions reflects while the other relevant descriptors are very close. This infor-
the global quality of the built models. mation can be used to propose different substituents around the

i CYPIA2 K test set
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Table 5. Summary and Comparison of Some Published Machine Learning Studies for 2D6 and 1A2 Cytochromes

CYP techniqu es training dataset external dataset Biological activity  used descriptors performance
2D6*  recursive 1759 from commercial 98 from commercial % of inhibition 2500 commercial r2= 0.88 (training set)
partitioni ng database source 2D descriptors
Spearman’s = 0.61 (test set)
2D6®  ensemble recursive 100 from literature 51 from literature Ki in-house 2D Accuracy= 100%
partitioni ng descriptors

(10 inhibitors)
Accuracy= 75%
(41 noninhibitors)

2D6'%  neural network 1810 from 600 from commercial 1Cso 2D descriptors Sensitivity: 86%, 83%
commercial source source
Bayesian model Specificity: 84%, 80%
2D6> SVM 602 from literature and 100 from literature Ki and others 1607 2D and 3D  Sensitivity= 75%
commercial sources not specified commercial

descriptors
Specificity= 96.3%

1A214 PLS 109 (22 in-house, 87 from 68 from commercial  ICsp, K;| in-house r2=0.72 (training set)
commercial source) source 2D descriptors

MLR r2=0.71 (training set)

CART r?2 = 0.84 (training set)

BNN r2=0.72 (training set)
Table 6. Differences in the Values of the Selected Descriptors for chemical scaffold to make the SMR_VSADS value falling into

CYP2D6 and CYP1AZ Inhibitors Classification either the inhibitor or the noninhibitor range.

CYP2D6 CYP1A2 QSAR models for CYP1A2 inhibition were recently reported
average value average value by Chohan et a¥* using four statistical approaches. The training

descriptor  inhibitor noninhibitor ~ descriptor  inhibitor noninhibitor set consisted of 1.0.9 compounds., 22 of them being in-house
compounds. A positive point of their approach was to remeasure

A_hydr 18.0 14.2 SMR_VSA6  15.1 56.2 .

br;my 304 259 SlogP VSA7 1246 78.4 the plGy for 81 compounds. The pkg of the remaining 28
Chil 11.8 9.7 SlogP_VSA9  63.3 79.4 drugs were taken from literature which gives a certain homo-
VdistEq 33 3.0 PEOE_VSA4 23 3.8 geneity to their biological data. The models that have been
PEOP_RPG 0.2 0.3

constructed combined literature results as well as in-house data

SMR_VSA5  166.0 127.9 . ) ; S
= and descriptors computed using an in-house application. To

Table 7. Descriptors Comparison for Four Compounds with Their Real Class and Their Predictet! Class

Molecular descriptors
Molecule Class Prediction

a_hyd bpol Chil VDistEq PEOP_RPC+ SMR_VSAS

O NV\,A\
(€] ) 18.00 2952 10.65 3.05 0.15 180.11

<]

Clomipramine

&

|
¢ RN © -) 1700 3020 1025 3.03 0.17 197.75

Imipramine

["j ) +) 22.00 4620 16.13 4.09 0.19 196.52

I

Nefazodone

Q

R N

[,g ) ) 22.00 4620 16.51 4.09 0.17 177.65

Hydroxynefazodone

a(+) stands for the inhibitors and-{ for the noninhibitors when considering a M class threshold.
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Table 8. Summary of the Best Predictive Models Obtained for CYP2D6 and CYP1A2 Inhibition

CYP dataset thresholgM descriptors Accuracy, % Sensitivity, % Specificity, % Precision, %
2D6 global 10 2B-PVSA 78 82 75 70
2D6 bufuralol 3/30 2B-PVSA 88 80 98 98
2D6 dextro. 3/30 2B-PVSA 82 81 83 90
2D6 AMMC 3/30 2D+PVSA 89 82 92 82
2D6 Ki 10 2D+PVSA 90 88 92 90
2D6 Ki 3/30 PVSA 90 90 91 92
2D6 Ki 3/3¢° 2D+PVSA 83 Precision: high- 85%, medium= 82%, poor= 83%
2D6 1Cso 10 2D (protonation) 85 89 84 69
2D6 1Cso 3/30 2D (protonation) 85 83 89 72
2D6 global 25 3D 84 83 85 85
2D6 global 25 2B-PVSA+3D 87 88 87 87
1A2 Ki 30 PVSA 89 95 83 85
1A2 Ki 30 2D+PVSA 89 86 92 93
1A2 1Cs0 30 PVSA 86 83 88 83
1A2 Global 50 3D 90 91 88 89
1A2 Global 10/200 2D+PVSA+3 D 86 Precision: high= 83%, medium= 85%, poor= 90%

aFor each model, datasets, classes threshold, and type of descriptors are ptédigaetlass study.

assess the diversity of the dataset, these authors used a hier- A synthetic view of the best models obtained for CYP2D6
archical clustering with a database of 594 marketed drugs andand CYP1A2 inhibition is shown in Table 8. Exploring both
then computed Euclidean distances between compounds in theCYPs in the same way, more high-quality models, with an
training and validation test sets. The dissimilarity was evaluated overall Accuracy of at least 80%, were obtained with CYP2D6
based on 123 calculated descriptors, which is similar to our datasets (11 models) in comparison to CYP1A2 (5 models).
approach but based on chemical fingerprints. It was found that DifferentiatingK; and 1Go measures led to the best models for
descriptors expressing lipophilicity and aromaticity were the both cytochromes P450, especidflybased models that reached
most relevant descriptors to model CYP1A2 inhibition. The an overall Accuracy of 90%. The abundance of high-structured
present study shows the influence of hydrophilicity expressed data for CYP2D6 allowed us to build different models based
by logP-based descriptors present in the CYP1A2 tree as canon the probe substrates used in the inhibition experimental
be seen from Figure 4. In addition, size and electrostatic inter- protocol. This study resulted in three specific models, with a
actions are relevant as indicated by the SMR_VSA6 and 82% minimum Accuracy, for Bufuralol, dextromethorphan, and
PEOE_VSAH4 descriptors. AMMC as probe substrates.

Finally, we attempted to classify some test sets used in other The use of P_VSA descriptors was particularly efficient, and
studies. We isolated 41 compounds from the work of Chohan models reaching 95% of correct inhibitors classification could
et al. that were not used in our CYP1A2 sésvalues were be generated. 3D descriptors also provided promising results
calculated on the basis of thes@ralues and, in doing so, the  but needed longer computation time, including a conformational
prediction accuracy was 91% and 78% for inhibitors and non- optimization part of all the molecules. Therefore, that kind of
inhibitors, respectively (details of the prediction are presented descriptor cannot be applied easily when a high-throughput
in the Supporting Information). screening is needed. Two multiclass models were also generated

All the methods used in the already published articles presentwith success despite the intrinsic difficulties of these complex
their own advantages and difficulties depending on the type of approaches. Accuracy values of 83 and 86% for CYP2D6 and
datasets and descriptors used. However, the results presente@YP1A2, respectively, were reached.
by all these authors seem to be satisfying. Nevertheless, one This work was focused on using various biological data to
wishes to emphasize that RP is a simple, reliable, and validatedconstitute datasets that will lead to efficient models. With the
method which is extremely easy to implement. Itis the optimal proposed models, we predicted with good performance the
tool for high-throughput screening performed at the beginning CYP2D6 and CYP1A2 inhibition potencies for a large series
of a drug discovery process. of molecules. The success of our strategy is based on the unusual
quality of our data that is a main difference with other studies.
Indeed, our datasets presented a good chemical diversity while

Efficient drug developments suppose an early prediction of also being highly structured. A deepened access to biological
ADME properties. In the field of metabolism, interactions with  protocols for each measure allowed us to constitute very relevant
cytochromes (CYPs) are significant. The goal of this study was datasets for each case. This was made possible by a complete
to develop efficient prediction models for the inhibition of analysis of the data coming from literature and the high
CYP2D6 and CYP1A2 using binary decision trees built with a structured databases available at Aureus Pharma.
recursive partitioning (RP) technique. Various datasets, different  The validation with external test sets led to fulfilling results.
sets of descriptors, i.e., 2D, P_VSA, and 3D, and diverse The main advantage of our RP-based method is that it is easy
inhibitor/noninhibitor class thresholds were tested to obtain the and quick to implement. This study also permitted us to vali-
best possible models. It was shown that these datasets coveredate the conditions of application of selected datasets. Further
a wide chemical space. To further picture chemical diversity, steps will be to use these datasets with other methods and/or
2D-descriptor-based principal components analysis was per-descriptors.
formed where both training and test datasets were projected on
the AurSCOPE ADME/DDI database or Specs databasiegw- Materials and Methods
ing that the available molecules are spread over the chemical = pata Collection. All the data collected for the study comes from
space (cf. Supporting Information). Specs database was reporteghe Aureus Pharmtaknowledge databases. These databases have
to include various and diverse scaffolds and fewer duplicates been designed to give access to detailed biological protocols as
compared to other commercial librarié3. well as chemical data. The knowledge bases cover several domains

Conclusions
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of pharmacology and contain large amount of measures aboutequal parts. A training set was randomly chosen in one set of data
different systems, i.e., CYP, G-protein coupled receptors, ion and used to perform the tree building. The rest of the data is then
channels, ... The AurSCOPE ADME/DDI knowledge database was used as test set to confirm the relevance of the tree, both sets
queried to retrieve inhibition measures for CYP2D6 and CYP1A2; remaining mutually exclusive. To avoid the overtraining during the
all the measures were extracted from 322 publications among moretree growing, QuaSAR Classify uses a pruning process. A sequence
than 4900 references recorded in the AurSCOPE ADME/DDI of subtrees is constructed from the initial tree, and the test dataset
database. is used to choose the final output tree from this sequence. Pruning
When several data were reported in the literature for the same removes one or more branches of a tree. The roots of the branches
compound, specific attention was given in selecting the most to be removed remain part of the pruned tree, becoming leaf nodes.
coherent data point, based on consistency and homogeneity of the MOE default parameters were used to build the RP trees. The
biological protocol (biological material, substrate probe, etc.). Only node split was set to 10, meaning that, once a branch of a tree
values corresponding to inhibition experiments done with common contains 10 or less compounds, it cannot be further subdivided.
probe substrates for the two CYPs were considered. Eventual Thus, each branch becomes a terminal leaf to which a class is
duplicates were eliminated on the basis of chemical fingerprints. attributed, i.e., either inhibitor or noninhibitor. The maximum depth
Following this process, the initial datasets included 498 inhibition of the trees was set to 10, but it was not a real restriction, as the
measures for human CYP2D6 and 306 for CYP1AZ,/@ndK; maximum depth observed was 7.
values considered together. To compare the performance of the different trees, several
We demonstrated significant differences with models built with measures were used. Accuracy (eq 1) is the overall classification
K; or ICse. The K| value is an inhibition constant independent of accuracy of a prediction model; it corresponds to the ratio of
the type or concentration of substrate and incubation conditions correctly classified compounddMisclassification rate, known as
that define the affinity of the inhibitor for the enzyme, whereas R(t), associated directly by MOE to each of the built tree, represents
ICso is the concentration of inhibitor required to cause 50% the ratio of incorrectly classified compounds. It obviously means

inhibition under a given set of experimental conditions. Udig
is always preferable rather than sfCvalues or percentage of
inhibition.

Detailed information concerning the construction of the datasets
regarding data standardization and how the quantitative biological
data points (IG vs K;, problem of multiple and sometimes

that the Accuracy equals-1 R(t). Sensitivity (also known as Recall)
(eq 2) is the ratio of inhibitors correctly predicted, whereas
Specificity (eq 3) is the ratio of noninhibitors correctly predicted.
Precision (eq 4) is a measure of the ability of a tree to predict a
specific class. In this study, only the Precision of the inhibitor class
was considered.

discordant activities available) were selected is given in the
S i f i Accuracy= TP+ TN 1)
upporting Information. N _ Y= TP+ TN+ FP+ EN
Descriptors. To build the decision trees, three types of descrip-
tors were mainly used. First, 114 two-dimensional (2D) descriptors Sensitivity= TP @)
were calculated for all the compounds related to CYP2D6 and Y TP+ FN
CYP1AZ2 inhibition measures. The calculation of the descriptors, ™
as implemented in the MOE softwate,was based on the Specificity=_|_N—+FP 3)
connectivity table of each molecule (nature of the atoms, nature of
the bonds, connectivity) and on tabulated parameters. The set of . TP
2D descriptors also contained intuitive information about the Precision= w5=—5 )

molecules such as molecular weight, number of a given atom, N

number of H-bond acceptors/donors, lipophilicity, etc., these Wherg TP= number of true posm\{gs, TN= number of true

descriptors supposedly leading to very interpretative decision trees negatives, FP= number of false positives, and FN number of
A second type of descriptor was created with 32 P_VSA false negatives.

arameterd® They are based on the approximation at atomic level  AS the goal of this study was the construction of models for the
gf the molecularyvan der Waals SUF]EZ)iF():e area, YSong with prediction of the inhibition of CYP2D6 and CYP1A2, we paid

several other molecular properti€%, VSA values were calculated
using parameters from the MMFF94 force fi€fldand the P;
considered were the molar refractivity, logP(o/w), and the electro-

particular attention to optimize the Sensitivity of the obtained
decision trees.
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