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The purpose of this study was to explore the use of detailed biological data in combination with a statistical
learning method for predicting the CYP1A2 and CYP2D6 inhibition. Data were extracted from the Aureus-
Pharma highly structured databases which contain precise measures and detailed experimental protocol
concerning the inhibition of the two cytochromes. The methodology used was Recursive Partitioning, an
easy and quick method to implement. The building of models was preceded by the evaluation of the chemical
space covered by the datasets. The descriptors used are available in the MOE software suite. The models
reached at least 80% of Accuracy and often exceeded this percentage for the Sensitivity (Recall), Specificity,
and Precision parameters. CYP2D6 datasets provided 11 models with Accuracy over 80%, while CYP1A2
datasets counted 5 high-accuracy models. Our models can be useful to predict the ADME properties during
the drug discovery process and are indicated for high-throughput screening.

Introduction

One of the major reasons of failure in drug discovery projects
is related to the poor pharmacokinetic and ADME (absorption,
distribution, metabolism, and excretion) properties of drug
candidates.1 Cytochromes P450 (CYPa) play a crucial role in
metabolism.2 The proportion of drugs metabolized in human
liver by CYP2D6 and CYP1A2 represents 19% and 10%,
respectively, of the whole activity range of all cytochromes.3

These percentages make them targets of choice for studying
very early the potential inhibition by drug candidates. Forecast-
ing inhibition of CYP2D6 and CYP1A2 can help to predict and
manage drug-drug interactions (DDI).4,5 It is thus particularly
important to take into account the biotransformation and
elimination of drugs during their development to determine as
early as possible their potential interactions with CYPs. In this
sense, predictivein silico models are very useful in ADME/
DDI predictions.6,7 However, in the case of CYPs, they are
particularly challenging to build due to the relative low speci-
ficity of these enzymes. Compounds metabolized by cyto-
chromes P450 are, indeed, structurally very dissimilar.

In silico studies, exploiting different methods as QSAR,
pharmacophore modeling, molecular docking, etc., have already
been published, and predicting CYP inhibition is more and more
efficient.8-15 The method chosen in our work is recursive
partitioning (RP), which is known to be fast and which leads
to easily interpretable results. RP is based on decision trees and
has been used in diagnostic16 as well as in high-throughput
virtual screening.17-21 More precisely, RP involves the creation
of a decision tree composed of binary split nodes that divide
the initial training set into smaller sets of higher purity, i.e., in

this study, sets containing a majority of inhibitors or a majority
of noninhibitors. Each split node can be compared to a binary
question (yes/no) regarding the value of a particular descriptor.
After the creation of the tree, any other new compound, for
which the descriptors used in the split nodes have been calcu-
lated, can be classified into an inhibitor or a noninhibitor type
category; binary trees can thus be used to predict ADME prop-
erties. RP is known to be sensitive to the descriptors used, to
unbalanced training sets, constituted for example with too many
inhibitors, and to the composition of the datasets, that can
radically change the decision tree.8 In this paper, we focused
on building efficient models for the prediction of CYP2D6 and
CYP1A2 inhibition. Different parameters have been optimized
and different datasets were constituted in order to propose
predictive models as accurate as possible.

One of the main problems consists of having access to a
sufficient number of structured data to build efficient models.
That is why our approach will be based on three main charac-
teristics of our datasets. The quantity of data had to be always
sufficient (∼100 compounds or more); the diversity of the
datasets needs to cover a large chemical space; and different
biological parameters linked to the compounds must be ana-
lyzed. Such a collection of data with these particular qualities
differentiates ours from all other previous works.8,11-15 The main
purpose of this study is thus, with a simple methodology (RP),
to investigate how structured biological data can help to consti-
tute the most efficient training sets to build prediction models.
The quantity, the quality, and the diversity of the datasets have
been prone to discussion. Accordingly, the goal followed here
is not to make a comparison between different methods to
improve the models but to probe different parameters character-
izing the training sets.

Results and Discussion

1. Datasets.To achieve this study, two global datasets of
498 and 306 compounds were at disposal for CYP2D6 and
CYP1A2, respectively. The content of each dataset is reported
in Table 1, including the class thresholds as well as the number
of inhibitors and noninhibitors in the sets.
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The chemical diversity of the training and test sets was
assessed using a nearest neighbor searching algorithm as imple-
mented in ChemAxon’s application Compr.22 In this algorithm,
a weighted Euclidean distance calculation applies the Tanimoto
(Jaccard) coefficient based on ChemAxon CF fingerprints. The
dissimilarity between molecules is then given by:

wherew1, w2 ... are weights,T(A,B), the Tanimoto coefficient
for molecules A and B, andCi(A), the value of descriptor i of
molecule A.

In the case of CYP2D6, the average and maximum nearest
neighbor self-dissimilarities within the global training set were
68.6% and 99.6%, respectively. For the CYP1A2 data, values
of the same range were obtained for the global training set, i.e.,
68.8% and 96.6%. The obtained values suggest that the used
datasets are sufficiently diverse. For both cytochromes, the same
analysis was done on corresponding external sets. Results are
discussed in Section 6.

To visualize the diversity of our datasets, molecules of the
training sets were compared with a general database of com-
pounds related to ADME measures found in the literature, i.e.,
with the AurSCOPE ADME/DDI database. The comparison was
based on the two first Principal Components calculated from
32 P_VSA descriptors of all the molecules. The well-distributed
data for both 2D6 and 1A2 sets reinforce the idea that our
datasets cover a large chemical space (Figure 1).

2.1. CYP2D6. Global Dataset.First, a global study was
performed with 498 compounds related to CYP2D6 inhibition
measures with mixed IC50 andKi using 2D+ P_VSA descrip-
tors. The accuracy of the different trees built with the different
parameters, i.e., varying node split, depth, threshold of inhibitor/
noninhibitor, allowed us to conclude that the default MOE
parameters, node split) 10 and depth) 10, were adapted to
our kind of study. Indeed, other parameter values did not
radically change the overall Accuracy of the trees that always
varied around 75%. The best model with this global dataset
had an Accuracy of 78% with an inhibitors/noninhibitors cutoff
of 10µM. Actually, this value could correspond to the expected
hepatic blood concentration of typical drug-like molecule when
administrated at therapeutic doses.8 This model correctly pre-
dicted 168 out of the 206 inhibitors, with 82% of Sensitivity,
and 219 of the 292 noninhibitors, with 75% of Specificity; the
Precision associated to inhibitor compounds was 70%. The
structure of the obtained tree with the descriptors involved is
presented in Figure 2.

2.2. CYP2D6. Probe Substrates Datasets.To improve our
models, more precise studies were performed based on the probe
substrate with which the inhibition measures were made. Three
main substrates were isolated to build consistent datasets, i.e.,
containing at least 80 compounds. These were bufuralol,

Table 1. Distribution of the Compounds in the Inhibitor and
Noninhibitor Classes According to the Different Thresholds

dataset class threshold,µM inhibitors noninhibitors

CYP2D 6
global 10 206 292

25 247 251
bufuralol 3-30 74 64
dextromethorphan 3-30 86 48
AMMC 3-30 61 28
Ki 10 78 85

3-30 51 51
IC50 10 71 174

3-30 47 142

CYP1A 2
global 50 154 152
Ki 30 41 40
IC50 30 92 133

D(A,B) ) 1 - T(A,B) ) {[1 - T(A,B)] +
w1[C1(A) - C1(B)]2 + w2[C2(A) - C2(B)]2 + ...}1/2

Figure 1. Data distribution of the CYP2D6 and CYP1A2 training sets
(blue dots) compared to AUREUS PHARMA’s AurSCOPE ADME/
DDI database, release June 2005 (grey dots). The comparison is based
on the two first principal components calculated from 32 P_VSA
descriptors.

Figure 2. Decision tree and its descriptors built with 498 compounds
related to IC50 or Ki measures for CYP2D6 inhibition. 2D descriptors,
including P_VSA descriptors, were used, and the limit between
inhibitors and noninhibitors was fixed to 10µM.
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dextromethorphan, and AMMC (3-[2-(N,N-diethyl-N-methyl-
ammonium)ethyl]-7-methoxy-4-methylcoumarin). Both sets of
2D and P_VSA descriptors were used together, and new cutoff
values for the classes were fixed, as the 10µM threshold did
not provide good results (data not shown). Inhibitors were
defined as compounds withKi or IC50 < 3 µM and noninhibitors
> 30 µM. Compounds between 3 and 30µM were removed,
but the inhibitors/noninhibitors classes were more discriminating
than the 10µM cutoff value. The 3 and 30µM cutoffs were
also chosen because of the good repartition of the compounds
in the two classes. Fixing these limits permitted us to keep
enough molecules in each class. Moreover, other thresholds were
tested in this particular case and did not provide results as good
as the 3-30 µM one. Generating a tree based on these sets led
to the construction of three models; performance parameters as
defined in Materials and Methods are shown in Table 2 for each
of them. All the parameters are above 80%, but the highlight
of the models is the particularly high Specificity, and Precision,
i.e., 98%, of the bufuralol-based model. This last decision tree
predicted 60 compounds to be inhibitors; only one of them was
actually a noninhibitor. Observing and comparing the three trees,
we conclude that they have a relatively small depth: 4, 3, 2 for
bufuralol, dextromethorphan, and AMMC, respectively. De-
scriptors used in their nodes are significantly different as shown
in Figure 3. No significant similarity between these trees can
be reported despite their close performances.

2.3. CYP2D6. SeparatingKi and IC50. Discriminating
between theKi and IC50 values could enhance the accuracy of
CYP2D6 models. It could not be done for the substrate study
due to the relative small size of the datasets. The distinction
could be done for the global set and led to the constitution of
a set of 163Ki compounds and a set of 245 IC50 compounds.
TheKi set provided the best results. A first model was generated
with the 2D and P_VSA descriptors together and a 10µM
threshold which separated the dataset into 78 inhibitors and 85
noninhibitors. Its Accuracy equals 90%, Sensitivity, 88%,
Specificity, 92%, and Precision, 90%, that constituted a really
efficient model (Figure 4). Using the set of P_VSA descriptors
alone with 3-30µM thresholds led to quite similar model
performances with an Accuracy of 90%, Sensitivity of 90%,
Specificity of 91%, and Precision of 92%. Obviously, the trees
cannot be compared because they are composed of totally
different descriptors. The one built with the 2D+ P_VSA
descriptors needed a depth of 5 and 10 nodes while the one
based on P_VSA alone has only a depth of 3 and is composed
of 5 nodes (data not shown). In this last case, the P_VSA
descriptors are more “efficient”, as they needed a smaller tree
to provide results as good as those with the 2D+ P_VSA
descriptors. An interesting event that can be highlighted is that
P_VSA descriptors were taken into account in the building of
the two trees; but mixed with pure 2D descriptors, the model
obtained was more complex but equal in performances. Doubt-
less, this is due to “noise“ generated by using too many descrip-
tors in this particular situation.

Such good results encouraged us to investigate more deeply
theKi set with a multiclass study. Three classes were therefore

defined. Compounds withKi < 3 µM were identified as high
inhibitors, that represented 51 molecules. Compounds withKi

between 3µM and 30µM were called medium inhibitors, with
65 molecules, and compounds withKi > 30 µM were called
poor inhibitors, with 47 molecules. This time, the combination
of the 2D and P_VSA descriptors led to the best model; the
classification percentages of the training set for each class are
presented in Table 3. The overall Accuracy of this model is
83%, and the Precision associated to each of the class is 85%,
82%, and 83%, for the high, medium, and poor inhibitors,
respectively. The model correctly discriminates high and poor
inhibitors, as when predicting high inhibitors, only 4% are taken
as poor and when predicting poor inhibitors, none of the com-
pounds are placed in the high inhibitors class. In the case of
IC50 measures, several combinations between the descriptors
sets and tree parameters were tested but none led to effective
models. The key was actually to take into account the proto-
nation stage of each molecule. Protonation of the basic functions,
deprotonation of the acid ones, and a recalculation of the
descriptors based this time on charged atoms succeeded in two
more efficient trees. The effect of this manipulation was to
enhance the electrostatic properties of the compounds. Actually,
electrostatic properties are one of the key factors governing
CYP2D6 inhibition (cf. Section 7. Comparison with Earlier
Studies). Their inhibitors/noninhibitors classes were defined as

Table 2. Performance Parameters, Accuracy, Sensitivity, Specificity,
and Precision (in %), for the Three Models Corresponding to Three
CYP2D6 Probe Substrates Used in the Inhibition Measurement
Protocols, Bufuralol, Dextromethorphan, and AMMC

Accuracy Sensitivity Specificity Precision

bufuralol 88 80 98 98
dextromethorphan 82 81 83 90
AMMC 89 82 92 82

Figure 3. Decision trees and their descriptors built from three datasets
corresponding to the three most frequent probe substrates (bufuralol,
dextromethorphan, and AMMC) used in the inhibition experiments for
CYP2D6.
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< or > 10 µM for the first one and<3 and>30 µM for the
other; they both presented an overall Accuracy of 85%. The
10 µM threshold tree presented 89% of Sensitivity, 84% of
Specificity, and 69% of Precision. The respective parameters
for the second tree are 83%, 89%, and 72%, respectively. Pre-
cision values are somewhat disappointing in regard of the
previous values obtained for theKi or probe substrate based
models. That can be explained by the unbalanced IC50 datasets.
Indeed, the sets contained about three-quarters of noninhibitor
compounds. A poor classification for these has a worse influence
on the Precision than for a balanced dataset, considering that
the proportion of false positives is larger. The two IC50 trees
are rather structurally different as the first one, with the 10µM
threshold, contained only 2 nodes for a depth of 2 and the other
one had 4 nodes and a depth of 4. Comparing the IC50 andKi

models, it is obvious that theKi-based models are more reliable
than the IC50-based models, as the difference of Accuracy is
5% in favor ofKi, i.e., 90% for both theKi models and 85%
for both the IC50 models. This can be explained by the fact that
Ki values are intrinsic constants, whereas IC50 values are
extrinsic constants. IC50 values, in contrast toKi values, are
dependent on the type of substrate, the concentration of sub-
strate, and incubation conditions (protein concentration or incu-
bation times, etc.). As a consequence, better classifications could
be obtained whenKi values are used instead of IC50 values.

3.1. CYP1A2. Defining a Threshold.The good quality
results obtained for CYP2D6 encouraged us to apply our
working method to another interesting cytochrome P450. The
CYP1A2 dataset was composed of 225 IC50 values and 81Ki

values. Literature sources about CYP1A2 did not provide a
precise inhibitor/noninhibitor threshold such as the 10µM value
for CYP2D6. Therefore, different trees were built with different
thresholds to determine the best limit between the two classes.
Two types of descriptors were tested for this study: 2D descrip-
tors and P_VSA descriptors. We analyzed different thresholds
between 3µM and 100µM and concluded that the optimum

results were obtained for thresholds between 30 and 50µM. It
is precisely the same range of threshold used in the recently
published study by Chohan et al.14

3.2. CYP1A2. SeparatingKi and IC50. As shown in the
CYP2D6 study, separating IC50 andKi generated good prediction
models. The IC50 dataset made of 225 molecules was used and,
combined with the set of P_VSA descriptors and a 30µM class
limit, gave an 86% Accuracy model. Sensitivity, Specificity,
and Precision were of 83%, 88%, and 83%, respectively. With
the same descriptors and the same threshold, theKi dataset of
81 molecules led to an overall Accuracy of 89%, Sensitivity of
95%, Specificity of 83%, and Precision of 85% (Figure 4). 39
of the 41 inhibitors were correctly classified. As for the CYP2D6
models, predicting classes based on theKi values is more
efficient. The 30-µM threshold separates once again theKi

dataset in two equal parts, i.e., 41 inhibitors and 40 noninhibi-
tors, following the example of the 50µM threshold on the global
set. If 2D descriptors are added to the P_VSA ones, theKi-
based model’s performances are quite similar with an overall
Accuracy of 89%, Sensitivity of 86%, Specificity of 92%, and
Precision of 93%.

4. Using 3D Descriptors.To further improve our models,
3D descriptors were also exploited. For CYP2D6, the use of
the set of 3D descriptors allowed us to build a model with an
84% Accuracy, 83% Sensitivity, 85% Specificity, and 85%
Precision. In a rather intuitive way, the addition of 2D descrip-
tors to the 3D ones allowed improvement of the model. Accu-
racy, Sensitivity, Specificity, and Precision, were 87%, 88%,
87%, and 87% respectively. With a set of mixed 2D and 3D
descriptors, the trees gained 2 to 5% on each accuracy parameter
compared to 3D descriptors used alone.

For the global CYP1A2 dataset, a tree was built based on
classes delimited by a 50µM threshold. The Accuracy was 90%,
Sensitivity, 91%, Specificity, 88%, and Precision, 89%. A
multiclass study was also performed. Very discriminating
thresholds were used: high inhibitors were under 10µM,
medium between 10 and 200µM and poor over 200µM. The
best results were obtained with a combination of all the
descriptors, 2D, P_VSA, and 3D. Actually, these values split
the dataset into three reasonably equivalent groups of 100, 80,
and 108 molecules, respectively. The overall Accuracy of the
obtained model is 86% and the Precision for the high, medium,
and poor inhibitors is 83%, 85%, and 90%, respectively. Classi-
fication results for all the classes are presented in Table 4. The
detailed structure of this tree is reported in Figure 5. The tree
(depth of 7, 27 nodes) resulting from the use of the three classes
that lead to three types of leaves is rather complex.

Figure 4. Two of the best models from the CYP2D6 (Ki dataset, 10µM threshold, 2D and P_VSA descriptors) and CYP1A2 (Ki dataset, 30µM
threshold, P_VSA descriptors) datasets. Both models have been validated with an external dataset of 34 and 58 compounds for CYP2D6 and
CYP1A2, respectively.+ and- signs mean that the class assigned to a leaf is inhibitor or noninhibitor, respectively. The distribution of molecules
of the test set in each leaf is positioned between brackets (number of correctly classified compounds/number of misclassified compounds).

Table 3. Prediction Percentages for the Multiclass Study Based on the
Ki Measures from the CYP2D6 Inhibition Experimentsa

prediction

class high, % medium, % poor, %

high 78 18 4
medium 11 78 11
poor 0 4 96

a Percentages of true prediction are noted in bold. Three classes where
considered: high inhibitors (Ki < 3µM), medium inhibitors (3µM < Ki<
30 µM), and poor inhibitors (Ki > 30 µM).
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5. Pertinent Descriptors. Principal component analysis
(PCA) reduces the dimensions of measured variables, i.e., our
descriptors, to the representative principal components (PCs).
As the set of PCs is smaller than the one of descriptors, a PC
explains a greater variability of the dataset than a single
descriptor. That kind of investigation was executed on the global
datasets for CYP2D6 and CYP1A2, focusing only on 2D and
P_VSA descriptors. The first two PCs did already describe about
40 and 10% of the whole variability for CYP2D6 and 45 and
10% for CYP1A2. As PCs are linear combinations of the
descriptors, searching for descriptors with a high coefficient in
the combination led to the isolation of the most influential ones.
In doing so, 39 descriptors were noted for the two first PCs of
CYP2D6 and CYP1A2 datasets. A majority of these descriptors
could be found in the four PCs considered. Very traditional
descriptors, such as density, SlogP, number of double/triple/
rotatable bonds, number of halogen atoms, and number of
H-bonds donor/acceptor, were defined as pertinent. Several

models based on this set of 39 descriptors were built but did
not led to better results compared to the ones obtained with the
previous trees.

For several molecules, 18 of all the 3D descriptors could not
be calculated. Therefore, 13 molecules from the CYP1A2 dataset
and 15 from the CYP2D6 dataset were removed to perform the
3D studies. When analyzing the descriptors of the 15 models
we retained, it can be concluded that some descriptors are more
used than others. SlogP appears 5 times and P_VSA descriptors
based on SlogP (named SlogP_VSAx) 16 times. Another 2D
descriptor is also counted 5 times, VDistEq, which is based on
the distance matrix of the molecule. For 3D descriptors, the
ones calculated from the AM1 method are the most frequent
with 10 occurrences. E_Tor (torsion potential energy) is counted
5 times. A deeper discussion about controlling factors for the
inhibition of CYP1A2 and CYP2D6 is presented in Section 7.

6. External Validation. To confirm the performance of our
models, two external test sets of 34 and 58 molecules related
to the CYP2D6 and CYP1A2Ki experiments were collected.
Their diversity was computed exactly as for the previous training
sets. For the CYP2D6 external test set, the average and
maximum nearest neighbor dissimilarities were 60.4% and
86.2%. When considering the diversity of the test set versus
the correspondingKi training set, the average and maximum
dissimilarities were 52.9% and 79.7%, respectively. For CYP1A2,
these values were 69.9% and 94.5% for the self-dissimilarity
evaluation of the external set, 80.4% and 98.7% for the test/
training sets dissimilarity comparison.

For both cytochromes, Figure 6 shows a good coverage of
chemical space. The molecules were submitted to the model

Table 4. Prediction Percentages for the Multiclass Study Mixing the
2D, P_VSA, and 3D Descriptors for the CYP1A2 Inhibition
Experimentsa

prediction

class high, % medium, % poor, %

high 89 5 6
medium 16 78 6
poor 5 6 89

a Percentages of true prediction are noted in bold. High inhibitors are
compounds whose IC50 or Ki are under 10µM, medium inhibitors are
between 10µM and 200µM, and poor inhibitors are over 200µM.

Figure 5. Decision tree built for a multiclass analysis for the CYP1A2 inhibition. Three classes of inhibitors were used: high inhibitors (Ki or IC50

< 10 µM), medium inhibitors (10µM < Ki or IC50 < 200µM), and poor inhibitors (Ki or IC50 > 200µM). Each node is labeled by a number that
corresponds to an entry of the table. The table contains the descriptor used in each node.
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we presented as the best: CYP2D6Ki-based tree built with 2D
and P_VSA descriptors (Figure 4). This validation was suc-
cessful, as only two false negatives and two false positives were
detected. The parameters of this classification are close from
those obtained with the training set, as the Accuracy is 89%
(90% for the training set), Sensitivity is 91% (88%), Specificity
is 81% (92%), and Precision is 91% (90%). The detail of the
repartition of the test set compounds in different leaves shows
that one leaf is particularly populated with 19 inhibitors and
one noninhibitor.

For CYP1A2, theKi-based model built using VSA descriptors
with 30 µM as threshold and best Sensitivity was evaluated on
the test set. Despite the larger dissimilarity between the training
and test sets, very reasonable parameters were obtained since
Accuracy is 81% (89% for the training set), Sensitivity is 76%
(95%), Specificity is 86% (83%), and Precision is 85% (85%).
Here, the distribution of the test set compounds is more
widespread; the validation of the model is thus reinforced.

Correlation matrixes of the main molecular descriptors
involved in the classification are given for the best 2D6 and
1A2 models in the Supporting Information; they indicate a low
degree of correlation among them.

In general the models are likely to correctly predict the test
set compounds when we consider similar datasets. Here, the
inter-dissimilarity between each of the training sets and its
corresponding test set along with obtained predictions reflects
the global quality of the built models.

7. Comparison with Earlier Studies. Several papers have
already described various pharmacophore models23-25 as
well as some 3D QSAR studies regarding CYP2D6 and
CYP1A2.10,12,26,27However, it is known that such approaches
are not convenient when large and diverse chemical and bio-
logical datasets are available from different sources. The use
of machine learning techniques with categorical data is conse-
quently gaining popularity and several studies on cytochromes
P450 have been reported due to the ability of using such models
to screen rapidly large molecular libraries (Table 5). Ekins et
al.28 employed RP to model the percentage of inhibition of
CYP2D6 using a large dataset of 1759 molecules in combination
with over 2500 augmented atom descriptors. Models were tested
on 98 external molecules leading to Spearman’s value of 0.61
with 50 compounds correctly predicted (51%). It should be noted
that, contrary to the present study, biological activity was
expressed in terms of percentage of inhibition, which is less
reliable than IC50 or Ki values. Similarly to Ekins et al., con-
sensus recursive partitioning was used by Susnow et al.8 to
identify inhibitors of CYP2D6. These authors used 25 in-house
2D molecular descriptors computed for a training set of 100
compounds. Internal validation tests indicated an overall clas-
sification of 75%. When applied to a 51 molecule external set
assembled from literature, the model led to an Accuracy of 100%
for 10 inhibitors and 75% for 41 noninhibitors. Recently,
O’Brien and de Groot13 used other machine learning methods
including neural networks and Bayesian models; a consensus
model combining these methods predicted 87% of positives and
75% of negatives. Although these three studies brought an
efficient overall prediction of CYP2D6 inhibitors, no precise
information on the selected descriptors and their interpretation
was reported.

Yap and Chen15 explored the use of the support vector
machine (SVM) for predicting inhibition for CYP3A4, CYP2C9,
and CYP2D6. The 2D6 training and validation datasets consisted
of 602 and 198 molecules, respectively. These authors used 1607
structural and physicochemical descriptors to compute the aver-
age similarity value between all pairs of compounds in the
dataset in a similar way to our method for analyzing the
chemical diversity of the training and validation sets. Descriptors
encoding electrostatic and hydrophobic characteristics were
selected as relevant descriptors to classify inhibitors and non-
inhibitors of CYP2D6. Our findings are consistent with these
earlier studies. When considering the model we presented as
the best, i.e.,Ki-based tree (Figure 4), the descriptors selected
on first nodes were a_hyd, number of hydrophobic atoms, chi1,
Hall atomic connectivity index,29,30 bpol, sum of the absolute
value of atomic polarizabilities of all bonded atoms in the
molecule, PEOE_RPC+, relative positive partial charge, and
the SMR_VSA5 descriptor. The average values of these descrip-
tors for inhibitors and noninhibitors of 2D6 dataset are gathered
in Table 6. These descriptors indicate the hydrophibicity, shape,
and electrostatic contributions, as suggested by pharmacophoric
modeling of inhibitors of CYP2D6.31 A comparison between
these descriptors for some similar molecules belonging to
different classes is given in Table 7. Hydroxynefazodone and
nefazodone are both 2D6 inhibitors but differently predicted.
This is due to the corresponding values of the size related
descriptor SMR_VSA5, 177.5 and 196.52 for hydroxynefazo-
done and nefazodone, respectively. Also interestingly, clo-
mipramine and imipramine, which differ by a Cl substituent,
belong to different classes and have distinct SMR_VSA5 values
while the other relevant descriptors are very close. This infor-
mation can be used to propose different substituents around the

Figure 6. Data distribution of CYP2D6 and CYP1A2Ki test sets (red
and blue dots, respectively) compared to Aureus Pharma’s AurSCOPE
ADME/DDI database, release June 2005 (grey dots). The comparison
is based on the two first principal components calculated from 32
P_VSA descriptors.
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chemical scaffold to make the SMR_VSA5 value falling into
either the inhibitor or the noninhibitor range.

QSAR models for CYP1A2 inhibition were recently reported
by Chohan et al.14 using four statistical approaches. The training
set consisted of 109 compounds, 22 of them being in-house
compounds. A positive point of their approach was to remeasure
the pIC50 for 81 compounds. The pIC50 of the remaining 28
drugs were taken from literature which gives a certain homo-
geneity to their biological data. The models that have been
constructed combined literature results as well as in-house data
and descriptors computed using an in-house application. To

Table 5. Summary and Comparison of Some Published Machine Learning Studies for 2D6 and 1A2 Cytochromes

CYP techniqu es training dataset external dataset Biological activity used descriptors performance

2D628 recursive
partitioni ng

1759 from commercial
database

98 from commercial
source

% of inhibition 2500 commercial
2D descriptors

r2 ) 0.88 (training set)

Spearman’sF ) 0.61 (test set)
2D68 ensemble recursive

partitioni ng
100 from literature 51 from literature Ki in-house 2D

descriptors
Accuracy) 100%

(10 inhibitors)
Accuracy) 75%
(41 noninhibitors)

2D613 neural network 1810 from
commercial source

600 from commercial
source

IC50 2D descriptors Sensitivity: 86%, 83%

Bayesian model Specificity: 84%, 80%
2D615 SVM 602 from literature and

commercial sources
100 from literature Ki and others

not specified
1607 2D and 3D

commercial
descriptors

Sensitivity) 75%

Specificity) 96.3%
1A214 PLS 109 (22 in-house, 87 from

commercial source)
68 from commercial

source
IC50, Ki in-house

2D descriptors
r2 ) 0.72 (training set)

MLR r2 ) 0.71 (training set)
CART r2 ) 0.84 (training set)
BNN r2 ) 0.72 (training set)

Table 6. Differences in the Values of the Selected Descriptors for
CYP2D6 and CYP1A2 Inhibitors Classification

CYP2D6 CYP1A2

average value average value

descriptor inhibitor noninhibitor descriptor inhibitor noninhibitor

A_hydr 18.0 14.2 SMR_VSA6 15.1 56.2
bpol 30.4 25.9 SlogP_VSA7 124.6 78.4
Chi1 11.8 9.7 SlogP_VSA9 63.3 79.4
VdistEq 3.3 3.0 PEOE_VSA4 2.3 3.8
PEOP_RPC+ 0.2 0.3
SMR_VSA5 166.0 127.9

Table 7. Descriptors Comparison for Four Compounds with Their Real Class and Their Predicted Classa

a (+) stands for the inhibitors and (-) for the noninhibitors when considering a 10µM class threshold.
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assess the diversity of the dataset, these authors used a hier-
archical clustering with a database of 594 marketed drugs and
then computed Euclidean distances between compounds in the
training and validation test sets. The dissimilarity was evaluated
based on 123 calculated descriptors, which is similar to our
approach but based on chemical fingerprints. It was found that
descriptors expressing lipophilicity and aromaticity were the
most relevant descriptors to model CYP1A2 inhibition. The
present study shows the influence of hydrophilicity expressed
by logP-based descriptors present in the CYP1A2 tree as can
be seen from Figure 4. In addition, size and electrostatic inter-
actions are relevant as indicated by the SMR_VSA6 and
PEOE_VSA+4 descriptors.

Finally, we attempted to classify some test sets used in other
studies. We isolated 41 compounds from the work of Chohan
et al. that were not used in our CYP1A2 sets.Ki values were
calculated on the basis of the IC50 values and, in doing so, the
prediction accuracy was 91% and 78% for inhibitors and non-
inhibitors, respectively (details of the prediction are presented
in the Supporting Information).

All the methods used in the already published articles present
their own advantages and difficulties depending on the type of
datasets and descriptors used. However, the results presented
by all these authors seem to be satisfying. Nevertheless, one
wishes to emphasize that RP is a simple, reliable, and validated
method which is extremely easy to implement. It is the optimal
tool for high-throughput screening performed at the beginning
of a drug discovery process.

Conclusions

Efficient drug developments suppose an early prediction of
ADME properties. In the field of metabolism, interactions with
cytochromes (CYPs) are significant. The goal of this study was
to develop efficient prediction models for the inhibition of
CYP2D6 and CYP1A2 using binary decision trees built with a
recursive partitioning (RP) technique. Various datasets, different
sets of descriptors, i.e., 2D, P_VSA, and 3D, and diverse
inhibitor/noninhibitor class thresholds were tested to obtain the
best possible models. It was shown that these datasets covered
a wide chemical space. To further picture chemical diversity,
2D-descriptor-based principal components analysis was per-
formed where both training and test datasets were projected on
the AurSCOPE ADME/DDI database or Specs database,32 show-
ing that the available molecules are spread over the chemical
space (cf. Supporting Information). Specs database was reported
to include various and diverse scaffolds and fewer duplicates
compared to other commercial libraries.33

A synthetic view of the best models obtained for CYP2D6
and CYP1A2 inhibition is shown in Table 8. Exploring both
CYPs in the same way, more high-quality models, with an
overall Accuracy of at least 80%, were obtained with CYP2D6
datasets (11 models) in comparison to CYP1A2 (5 models).
DifferentiatingKi and IC50 measures led to the best models for
both cytochromes P450, especiallyKi-based models that reached
an overall Accuracy of 90%. The abundance of high-structured
data for CYP2D6 allowed us to build different models based
on the probe substrates used in the inhibition experimental
protocol. This study resulted in three specific models, with a
82% minimum Accuracy, for Bufuralol, dextromethorphan, and
AMMC as probe substrates.

The use of P_VSA descriptors was particularly efficient, and
models reaching 95% of correct inhibitors classification could
be generated. 3D descriptors also provided promising results
but needed longer computation time, including a conformational
optimization part of all the molecules. Therefore, that kind of
descriptor cannot be applied easily when a high-throughput
screening is needed. Two multiclass models were also generated
with success despite the intrinsic difficulties of these complex
approaches. Accuracy values of 83 and 86% for CYP2D6 and
CYP1A2, respectively, were reached.

This work was focused on using various biological data to
constitute datasets that will lead to efficient models. With the
proposed models, we predicted with good performance the
CYP2D6 and CYP1A2 inhibition potencies for a large series
of molecules. The success of our strategy is based on the unusual
quality of our data that is a main difference with other studies.
Indeed, our datasets presented a good chemical diversity while
also being highly structured. A deepened access to biological
protocols for each measure allowed us to constitute very relevant
datasets for each case. This was made possible by a complete
analysis of the data coming from literature and the high
structured databases available at Aureus Pharma.

The validation with external test sets led to fulfilling results.
The main advantage of our RP-based method is that it is easy
and quick to implement. This study also permitted us to vali-
date the conditions of application of selected datasets. Further
steps will be to use these datasets with other methods and/or
descriptors.

Materials and Methods

Data Collection.All the data collected for the study comes from
the Aureus Pharma34 knowledge databases. These databases have
been designed to give access to detailed biological protocols as
well as chemical data. The knowledge bases cover several domains

Table 8. Summary of the Best Predictive Models Obtained for CYP2D6 and CYP1A2 Inhibitiona

CYP dataset threshold,µM descriptors Accuracy, % Sensitivity, % Specificity, % Precision, %

2D6 global 10 2D+PVSA 78 82 75 70
2D6 bufuralol 3/30 2D+PVSA 88 80 98 98
2D6 dextro. 3/30 2D+PVSA 82 81 83 90
2D6 AMMC 3/30 2D+PVSA 89 82 92 82
2D6 Ki 10 2D+PVSA 90 88 92 90
2D6 Ki 3/30 PVSA 90 90 91 92
2D6 Ki 3/30b 2D+PVSA 83 Precision: high) 85%, medium) 82%, poor) 83%
2D6 IC50 10 2D (protonation) 85 89 84 69
2D6 IC50 3/30 2D (protonation) 85 83 89 72
2D6 global 25 3D 84 83 85 85
2D6 global 25 2D+PVSA+3D 87 88 87 87
1A2 Ki 30 PVSA 89 95 83 85
1A2 Ki 30 2D+PVSA 89 86 92 93
1A2 IC50 30 PVSA 86 83 88 83
1A2 Global 50 3D 90 91 88 89
1A2 Global 10/200b 2D+PVSA+3 D 86 Precision: high) 83%, medium) 85%, poor) 90%

a For each model, datasets, classes threshold, and type of descriptors are precised.b Multi-class study.
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of pharmacology and contain large amount of measures about
different systems, i.e., CYP, G-protein coupled receptors, ion
channels, ... The AurSCOPE ADME/DDI knowledge database was
queried to retrieve inhibition measures for CYP2D6 and CYP1A2;
all the measures were extracted from 322 publications among more
than 4900 references recorded in the AurSCOPE ADME/DDI
database.

When several data were reported in the literature for the same
compound, specific attention was given in selecting the most
coherent data point, based on consistency and homogeneity of the
biological protocol (biological material, substrate probe, etc.). Only
values corresponding to inhibition experiments done with common
probe substrates for the two CYPs were considered. Eventual
duplicates were eliminated on the basis of chemical fingerprints.
Following this process, the initial datasets included 498 inhibition
measures for human CYP2D6 and 306 for CYP1A2, IC50, andKi

values considered together.
We demonstrated significant differences with models built with

Ki or IC50. The Ki value is an inhibition constant independent of
the type or concentration of substrate and incubation conditions
that define the affinity of the inhibitor for the enzyme, whereas
IC50 is the concentration of inhibitor required to cause 50%
inhibition under a given set of experimental conditions. UsingKi

is always preferable rather than IC50 values or percentage of
inhibition.

Detailed information concerning the construction of the datasets
regarding data standardization and how the quantitative biological
data points (IC50 vs Ki, problem of multiple and sometimes
discordant activities available) were selected is given in the
Supporting Information.

Descriptors.To build the decision trees, three types of descrip-
tors were mainly used. First, 114 two-dimensional (2D) descriptors
were calculated for all the compounds related to CYP2D6 and
CYP1A2 inhibition measures. The calculation of the descriptors,
as implemented in the MOE software,35 was based on the
connectivity table of each molecule (nature of the atoms, nature of
the bonds, connectivity) and on tabulated parameters. The set of
2D descriptors also contained intuitive information about the
molecules such as molecular weight, number of a given atom,
number of H-bond acceptors/donors, lipophilicity, etc., these
descriptors supposedly leading to very interpretative decision trees.

A second type of descriptor was created with 32 P_VSA
parameters.36 They are based on the approximation at atomic level
of the molecular van der Waals surface area, VSAi, along with
several other molecular properties,Pi. VSAi values were calculated
using parameters from the MMFF94 force field,37 and the Pi

considered were the molar refractivity, logP(o/w), and the electro-
static properties or pharmacophore characteristics. Each descriptor
in the series was defined to be the sum of the VSAi over all atoms
i for which its Pi value is in a specified range [a,b]. The ranges
were determined by percentile subdivision over a database of 44795
compounds from the Maybridge catalog.38 The descriptors were
verified to be uncorrelated, and it was shown that a small numbers
of those contained much more information encoded than larger sets
of other popular descriptors.36 It should be noted that the calculation
of the P_VSA descriptors needs only the 2D molecular connectivity
as input by MOE.

The third type of descriptor was composed of 3D parameters.
Considering that structures provided by literature are planar
projections, an energy minimization was performed on all the
molecules to generate reliable 3D coordinates. This has been
completed with the CORINA software.39-42 Once generated, the
3D coordinates were used by MOE to calculate the 3D descriptors.

Computational Method. Managing all data, calculating the
descriptors, constituting the training and test sets, building the trees,
and predicting the classes were all executed with MOE on a
Windows computer (3 GHz CPU, 1 GB RAM). The MOE
QuaSAR-Classify module that implements RP algorithm was used
to build and display the classification trees. For choosing the output
tree, a cross-validation approach was used; thek-parameter was 2,
meaning that the algorithm subdivides the whole dataset in two

equal parts. A training set was randomly chosen in one set of data
and used to perform the tree building. The rest of the data is then
used as test set to confirm the relevance of the tree, both sets
remaining mutually exclusive. To avoid the overtraining during the
tree growing, QuaSAR Classify uses a pruning process. A sequence
of subtrees is constructed from the initial tree, and the test dataset
is used to choose the final output tree from this sequence. Pruning
removes one or more branches of a tree. The roots of the branches
to be removed remain part of the pruned tree, becoming leaf nodes.

MOE default parameters were used to build the RP trees. The
node split was set to 10, meaning that, once a branch of a tree
contains 10 or less compounds, it cannot be further subdivided.
Thus, each branch becomes a terminal leaf to which a class is
attributed, i.e., either inhibitor or noninhibitor. The maximum depth
of the trees was set to 10, but it was not a real restriction, as the
maximum depth observed was 7.

To compare the performance of the different trees, several
measures were used. Accuracy (eq 1) is the overall classification
accuracy of a prediction model; it corresponds to the ratio of
correctly classified compounds.43 Misclassification rate, known as
R(t), associated directly by MOE to each of the built tree, represents
the ratio of incorrectly classified compounds. It obviously means
that the Accuracy equals 1- R(t). Sensitivity (also known as Recall)
(eq 2) is the ratio of inhibitors correctly predicted, whereas
Specificity (eq 3) is the ratio of noninhibitors correctly predicted.
Precision (eq 4) is a measure of the ability of a tree to predict a
specific class. In this study, only the Precision of the inhibitor class
was considered.

where TP) number of true positives, TN) number of true
negatives, FP) number of false positives, and FN) number of
false negatives.

As the goal of this study was the construction of models for the
prediction of the inhibition of CYP2D6 and CYP1A2, we paid
particular attention to optimize the Sensitivity of the obtained
decision trees.
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